
J .  Fluid Me&. (1988), vol. 186, pp. 321-336 

Printed in Great Britain 

32 1 

Lagrangian moments and mass transport in 
Stokes waves 

Part 2. Water of finite depth 

By M. S. LONGUET-HIGGINS 
Department of Applied Mathematics and Theoretical Physics, University of Cambridge, 
Silver Street, Cambridge CB3 9EW and Institute of Oceanographic Sciences, Wormley, 

Surrey, GU8 5UB, UK 

(Received 15 May 1987) 

Some simple relations between the Lagrangian moments and cumulants in a steady 
finite-amplitude gravity wave on deep water are here generalized to water of finite 
depth. The first three Lagrangian moments are shown to be given in term of the 
mass-transport velocity U a t  the free surface, the potential and kinetic energy 
densities V and T, and the mean-square particle velocity 

A simple method of calculation is described, which exploits certain quadratic 
relations between the Fourier coefficients in Stokes’s series. The ratio U / c  and the 
associated Lagrangian skewness is calculated for periodic waves, as a function of the 
wave steepness and the mean water depth. 

For limiting waves, i.e. those with sharp crests, it is found that the most symmetric 
orbits, in the Lagrangian sense, occur not in very deep or very shallow water, but a t  
one intermediate value of the ratio of depth to wavelength. When the depth 
parameter kd equals 1.93 the vertical displacement of a marked particle a t  the free 
surface is closely sinusoidal in the time t .  

on the bottom. 

1. Introduction 
Lagrangian methods of observing ocean waves, by photographing a floating 

marker, or by means of an accelerometer mounted in a freely floating buoy, are now 
commonly employed. However, for waves of finite amplitude, quantities so measured 
must differ in general from those obtained with fixed instruments. In  two recent 
papers (1986a, 1987) the present author pointed out some simple but exact relations 
between the Lagrangian surface elevation - particularly its mean value, variance 
and skewness - and other integral properties of the wave, namely the potential and 
kinetic energies V and T ,  the phase-speed c and the mass-transport velocity U at the 
free surface. The analysis was for deep-water waves, with particular application to 
remote sensing from satellites. 

In shallow water the mean depth of water is sometimes measured by observing 
photographically the vertical displacements of a floating body. The present paper 
generalizes the previous relations for deep water to Stokes waves in water of any 
finite depth. The analysis is only slightly longer, and the final results (see $9) are 
found to be formally almost as simple. Extensive use is made of certain quadratic 
relations between Stokes coefficients (see Longuet-Higgins 1978) for waves in finite 
depth, and a computational method based on these relations is described and carried 
out. 
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FIGURE 1. Sketch defining coordinates and parameters for waves in water of finite depth. 

2. Notation and definitions 
Consider steady, irrotational waves of finite amplitude a, travelling to the right 

with speed c, as in figure 1. To fix a reference frame, suppose first that  the time-mean 
value t~ of the horizontal fluid velocity u a t  some fixed point beneath the level of the 
wave troughs vanishes. Then, since the motion is irrotational, ti vanishes at all such 
points. In  particular, if uB is the horizontal velocity at the bottom, 

tiB = 0. (2.1) 

The phase-speed c is measured relative to this reference frame. 
Now relative to another reference frame moving with horizontal speed c the 

motion becomes steady, and we may fix the origin of the vertical coordinate y by 
supposing .that in Bernoulli's equation 

g+hz+gy = constant (2.2) 
P 

the constant on the right-hand side is zero. Here p ,  q and p denote the pressure, 
particle speed and the fluid density, and g is gravity. The origin 0 is then somewhat 
above the crest level, as in figure 1.  We shall not a t  first assume that origin lies 
vertically above a wave crest, or indeed that the free surface is symmetric fore-and- 
aft. I n  this reference frame the bottom will be given by y=-H,  say, the free 
surface by y = 7, and the (Eulerian) mean level by 

T E  = h - H ,  (2.3) 

where h is the mean depth of water 
Now if qs and qB denote the values of q a t  the free surface ( p  = 0) and at the bottom 

(2.4) 
respectively we have from (2.2) 

% + 9 7 =  0 

and P,+l 2qB-gH 2 = 0. 
P 

On taking mean values with respect to x (or time t )  we have 
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But since on the bottom the vertical component of velocity vanishes there is no 
vertical flux of momentum there. Hence 

- 
pB = gh. 
P 

(2.7) 

From (2 .3) ,  (2 .6)  and (2 .7)  it follows that 

gjijE = g(h-H) = --&z (2.8) 

(2 .9)  so jijE = - - q B .  1 7  
29 

Since qB = c -uB it follows from (2.9) and (2.1) that 

(2.10) 

This is the appropriate generalization of the deep-water case (Longuet-Higgins 
1986a, equation (3.13)) when uB is not zero. 

3. Lagrangian mean values 
General formulae for the Lagrangian moments can be derived by the same 

argument as in Longuet-Higgins (1987). Thus the rth Lagrangian moment of 7 is by 
definition 

where TL denotes the Lagrangian period : 

TL = Sdt  

and t denotes the time following a particle. But if @ denotes the velocity potential 
in the moving reference frame we have 

(3 .3)  

In  the case r = 1 this gives for the Lagrangian-mean level 

and since 

it follows that 

TE = L / c  being the Eulerian wave period. From (3 .7)  and (2.10) we have 

(3 .4)  

(3 .7)  
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so that (3.8) can also be written 
1 

?jL-,ijE = - (UC+@k). 
2g 

This is the appropriate generalization of Longuet-Higgins (1986 a, equation (3.8)) 
when uB + 0. 

4. Higher moments 
To proceed further we introduce the stream function Y of the steady motion as 

seen in the moving reference frame, and take Y = 0 at the free surface, Y = YB on 
the bottom. It is convenient to take first the case when the waves are symmetric 
about the crests, @ = 0 say, then the coordinates X ,  Y in the moving frame can be 
expressed in terms of @, Y by the Fourier series 

m 'E3 n@) Y - cos- 

(3.10) 

the A ,  being real constants, to be determined. The equation of the free surface 
Y = 0 can therefore be expressed parametrically in the form 

m 

7 = $a,+Z a, cosn6, ) 
(4.2) 

where we have written 8 = - -@/c ,  

and 

a, = A,, a, = A ,  s i n h s ,  n = 1,2, ... (4.3) 

(4.4) 

C 

Note that a, is generally negative, but that y,, like YB, is positive. It will be helpful 
to write also 

and define 
b , = 1 ,  b,=na,, n = i , 2  ,... (4.5) 

J = t(a;+u;+ ...), 

(4.6) 

(4.7) 

I K = $(al b, y1 + a2 b, y2  + . . .), 
N = %[b:(l+ y;)  +bi ( l  -I- y i )+ ...I. 

Note that the Eulerian mean level is given immediately by 

,ijE = - 7dX = $,+K, L 'I 
so that from (2.10) we have also 

z= -~~-gg(a,+2K). 
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For the second Lagrangian moment we have, on setting r = 2 in (3.4), 
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(4.9) 

and similarly for the third moment 

These expressions will now be lelated to other integral properties of the motion. 

5. Momentum and kinetic energy densities 

Let I = 1 r, udzdy 

denote the mean density of the impulse, or horizontal momentum of the wave, in the 
original frame of reference. If q5 = @+cX denotes the velocity potential in this 
reference frame it  may be shown that 

(see Longuet-Higgins 1975, equation (2.5)).  Since dq5 = d@+cdX this becomes 

I = - (7-VE)dQj. 
L ‘ S  

Substitution from (4.2) then gives 

I = -c($a,-K) = cK 
by (4.7). 

Now the kinetic energy density T ,  defined by 

(5.3) 

(5.4) 

is related to the momentum density I by 

2T = CI (5.6) 

2T = c2K, (5.7) 

(see for example Longuet-Higgins 1975, equation (B)). So fom (5.4) and (5.6) we 
have 

where K is given by (4.6). 

6. The potential energy 
The potential energy density V is related to the second Eulerian moment 
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Substitution from the series (4.2) gives 

mE2 = ia:+J+a,K+R, 

I r m  00 m 
where R = J C a, cosl8 E am cosm6 C bn y n  cosne d6. 

1 1 1 

Carrying out the integration we obtain 

4R = blyl [2(aIa2+a2a3+ ...I 
+ 6 2  Y2[2(% a3 + a2 a* + . . .) + (a, a1)l 
+b3Y3[2(% a4 +a2 a5 + . . .) + (a, a2 +a, %)I 
+ b, y,[2(a, a5 + a2 a, + . . .) + (a, a3 + a2 a2 + a3 CAI)] 

+.... (6.4) 
To reduce this expression we make use of the integral relation 

Y ( X ,  + iym Y,) eim@lc d@ = 0, r 
where m is any positive integer (see Longuet-Higgins 1978, equation (7.8)). 
Substitution from (4.2) yields the following system : 

m m m 

C am-n bn Y n  + C 
n=n n=rn+l n=o 

an-rn bn Yn  + C am+n bnYa 

(6.7) 

am-nb,+ C an-mbn- C am+nbn Ym = 0, (6.6) 1 m 00 a, 

n-m+l n=n 

with m = 1,2,  ... . 
Multiplying (6.6) by am and summing over the positive integers m we obtain 

(a  + ti) + ( p + p) + ( y  - 7) + 4 J  + 4a,K = 0, (6.8) 

(6.9) i 

1 

a, m-1 

m-2 n=1 

‘x a, 

where a =  C a m  C arn-nbnyn, 

C am C am-nbnymj 
m-2 n=1 

m m 

p =  C am C an-mbnyn ,  
rn-I n-rn+l 

m u3 

p= C a, C an-rnbnym, 
m-1 n=m+l 

m 0; 

Y =  C a m  a m + n b n Y n ,  
m=l n=l 

00 m 

Y =  C am C am+nbnYm. 
m-1 n = l  

The following identities are easily established : 

p = 26,  p = a+?, y = a. 

a+@ = -$(J+aoK).  
From (6.8) i t  now follows that 

(6.10) 

(6.1 1)  

(6.12) 

(6.13) 
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But (6.4) can be written 4R = 2(ct+di). (6.14) 

It follows that R = -$(J+a,K) (6.15) 

and so from (6.2) mE2 = $g+t(J+a,K). (6.16) 

So the potential energy density V is given by 

2V/g = mE2-& (6.17) 

(6.18) = i ( J  - 2a0 K - 3K2) 

from (4.7). Alternative expressions are 

2v/g  = +(J--4KfE+K2) (6.19) 

or + K 2 ]  
2K(c2 + ig) 

g 3  9 
(6.20) 

by (2.10). In  deep water uB vanishes and (6.12) reduces to  (6.2) of Longuet-Higgins 
(1984), after correction of a misprint. 

7. The Lagrangian density (T- V )  
By inspection, the system of equations (6.6) may be expressed in the form 

aF -=o ,  m = 1 , 2  )...) 
aa?n 

- 
where F = J'(ao, a,, a2, .. . ; c2, u t ) ,  

= (J  + a,K) +$(a + E )  +a(., + c2+ %)2. 

Since a and E do not involve a, explicitly we have also 

by (4.8). Thus the total differential CW satisfies 

= $ ( a , + c 2 + Z )  (dc2+d2) ,  

= -K(dc2+d&. 

(7.1) 

7.2) 

(7.4) 

The function F is related to the Lagrangian density 9 = (T - V )  as follows. From 
(5.7) and (6.19) we have (if g = 1). 

- 2 9  = $(J-4XrE+K2)-~ 'K (7.5) 

and on substitution for 5 and c2 from (4.7) and (4.8) we find 

- 2 9  = @+a,K)+K(K+ig$ 

F = $(J + a, K )  +K2. 

On the other hand from (7.2), (6.13) and (4.8) we have 
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Hence F = - 2 . 9 - K G .  (7.8) 

This generalizes to  finite depth the simpler relation F = - 2 3  valid when uB = 0 (see 
Longuet-Higgins 1985, equation (3.7)).  

From (7.8) i t  follows also that 

2d.9 = - d F - G d K - K d z  (7.9) 

= K d c 2 - Z d K  (7.10) 

by (7.4). This can be reconciled with a more general relation (Longuet-Higgins 1975, 
equation (4.17)) namely 

(7.11) 
dc dL 

d 3 = 2 T - + ( T - 2 V + B h ) - - ~ ~ d h .  
C L 

For, we have 2Tdclc = Tdc2/c2 = iKc2, and since the wavelength L is fixed, dL 
vanishes. Thus (7.11) becomes 

2 d 2  = K dc2-Gdh.  (7.12) 

But in the differentiation of (7.2) the coefficients y, were kept constant, implying 

(7.13) 
that Q is constant, where 

Q = 5 = h-- = h-K. I 
C C 

Thus dh = dK and (7.10) and (7.12) are seen to be equivalent. 
We note that (7.1) and (7.2) provide an alternative proof of (6.13). For, J and K 

are each homogenous quantities of degree 2 in a,, 2 ,  . . . . Also a, B are both homogenous 
quantities of degree 3. So by Euler’s theorem 

(7.14) 
t3F C a, - = 2(J+a0K)+$(a+6).  

m=1 8% 

But the left-hand side vanishes, by (7.1),  so that (6.13) follows immediately. 

8. The mass-transport velocity 
From (3.2) and (3.3) of the present paper we have 

where N is given by (4.6). Since L/c = TE we obtain 

- TL = 1 + 2 N ,  
TE 

(8.3) 
U 

hence -=  1-(1+2N)- l  
C 

as in the deep-water case, but with N given by the more general expression (4.6). 

9. Cumulants of qL 
We may summarize previous results for the moments of qL by writing 
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so (3.7), (4.9) and (4.10) become respectively 

m,, = - BG, 

mL2 = BCA, 
mL3 = - BC(A2 + J ) .  

(9.2) 

The second and third cumulants can then be written 

and 

K~~ = mL2 - mL1 = BC(A - BC) 

= - BC[(A - BC)  ( A  - 2BC) + J ] .  

(9.3) 

(9.4) 

KJJ = mL3 - 3m,, mL1 + 2mi, 

In terms of the physical quantities T ,  V , ' c 2  and we have from (5 .7)  

Then from (2.10) and (4.7) 
2T c2+G A=-+-----  
c2 29 

and from (6.20) 

J = 6V/g-4T'/~~-4T(l +G/c2))/g (9.7) 

while from (7 .1)  
U B =  I--- 
C 

In deep water, when z/c2 vanishes, these expressions reduce formally to  those given 
in $4 of Longuet-Higgins (1987). 

10. Computation 
To obtain numerical values for waves in water of moderate depth, we may first 

normalize with respect to the wavelength L by choosing L = 2n, and also g = 1 .  We 
then choose a given value of Q / c  (equation (7.13)), enabling us to  compute the 
coefficients yrn (see (4.4)) as far as required. The system of equations (6.6) can then 
be solved for a,,, a,, a2, . . . subject to a given amplitude 

a,+a,+a,+ ... = a (10.1) 

say, by the method in $5 of Longuet-Higgins (1985), for waves in deep water. An 
alternative parameter is 

1 + ~ 0 + a , + a 2 - t . . .  = l-&,st. (10.2) 

We note that since (6.6) involves only positive values of m, the system can be 
expressed in the more convenient form 

aF* 
aarn 

F m = - - - = O ,  m = 1 , 2  ,..., (10.3) 

where F* is an abbreviated form of F ,  namely 

F* = ( J + a 0 K ) + B ( a + ~ ) .  (10.4) 
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The Jacobian of this system, namely 

is obviously symmetric. In fact we find 

where we have written 

€ o = o ,  &,=nYn,  n = 1 , 2 , . .  

(10.5) 

(10.6) 

(10.7) 

and where d1, , = 1 when I = m, and 0 otherwise. Moreover, when I = 0 and m > 0 we 
have 

In deep water these equations reduce to  the form 

except that  when 1 = 0, m > 0, 

(10.8) 

(10.9) 

(10.10) 

(cf. Longuet-Higgins 1985, equation (5.10)). 

J ,  K and N of 94, (4.6) ; also the depth h, from 
Having found the coefficients am, we can now compute the fundamental quantities 

h = &+K (10.11) 

(see (7.13)), the mean surface level f E ,  from (4.7), and the value of z, or (c2+G), 
from (2.9). 

To find the phase speed c ,  we note that from the series for dX/aGj in (4.11) the fluid 
velocities pc and qt a t  the crest (8 = 0) and trough (0 = n) are given by 

m 
C - = -1-c (-)n€%a,. 
4t. 1 

But from (2.4) we have also 
m \ 

1 I q: = -a0-2 C a,, 

(10.12) 

(10.13) 
m 

qt = -ao-2 (-In a,. J 
1 
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FIGURE 2. The ratio U l c ,  giving the mass-transport velocity U as a function of c2, for given values 
of R = e-Q''. 

So we obtain the two alternative expressions 

for c2 in terms of the coefficients a,. (Of these, the second, which involves alternating 
series, is likely to be the more accurate.) 

The value of T then follows from (5.7),  and V and U / c  from (6.19) and (8.3) 
respectively. Hence, with TE/TL given by (8.2), we have all the necessary quantities 
for calculating the moments and cumulants, as in $9. 

These computations were carried out for a representative set of parameters, for 
waves of less than the limiting steepness. For convenience we chose a subset of the 
parameter values used by Cokelet (1977), who tabulated values of I ,  T ,  V and c2 by 
an independent method based on cubic relations between the coefficients. Cokelet 
used regularly spaced values of the parameter 

(10.15) 

which runs monotonically from 0 (for very low waves) to 1 for limiting waves of the 
same wavelength. The present method can also be adapted to accommodate any 
specifie value of e2 by noting that 

€2 = 1 -p-2, (10.16) 

where (10.17) 
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I /  0.4 

1 .0 

FIGURE 3. The skewness parameter A,, = ~ , J ( K , $ ,  as a function of c2, for 
R = 0, 0.2, 0.4 and 0.6. 

Hence a given value of e2 corresponds to a given value of p, But from (10.12) we 
have 

p = ( 1 + C ) 2 - c ' 2  (10.18) 

where C and c' signify the sums of 6 ,  a, over even and odd values of n respectively. 
We may then apply the modification suggested in Longuet-Higgins (1985,95), noting 
tha.t 

n = 0, 

-2e,c' n odd. 

(10.19) 

For a sufficient number no of coefficients n, the computed values of a,  2, T ,  V ,  K 
and TE were found to be in agreement with Cokelet's values to a t  least five significant 
figures, generally more. 

corresponds to our K ,  and his 
K corresponds to (2K-&) in our notation. Like Cokelet we choose as the 'depth' 
parameter R = e-& = e-Q/', which ranges from 0 for deep water to almost 1 for 
shallow-water waves. The limiting value 1 corresponds to solitary waves. 

Figure 2 shows a graph of U l c .  We see that, for given R, U / c  increases 
monotonically with the amplitude parameter 2. Moreover, for given e2, U / c  
diminishes monotonically with R. As R+ 1, that is in very shallow water, it may be 
shown that for a given wavelength, U / c  must tend to zero asymptotically like 

Note that Cokelet's d corresponds to our & / c .  His 

(1-R). 
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FIGURE 4. U / c  and A,, as functions of R, in waves of limiting steepness (2 = 1 ) .  

The maximum value c2 = 1 corresponds to limiting waves, which are best treated 

Similarly figure 3 shows the skewness parameter 
by special methods (see $11). 

KL3 hL3 = - 
( K L 2 P  

(10.20) 

plotted against E for chosen values of the depth parameter R. As shown in Longuet- 
Higgins (1987), the orbital skewness A,, in deep water (R = 0) is remarkably small. 
As R increases, so lhL31 generally increases with R, a t  fixed values of c2, but with an 
exception in the case of very steep waves. This will now be discussed. 

11. Limiting waves (e2 = 1) 

The maximum value e2 = 1 corresponds to waves of limiting steepness. In this case 
Fourier series are not convenient, though good results have been achieved with the aid 
of Pad6 approximants, as in Cokelet (1977). However, the most accurate calculations 
are probably those of Williams (1981, 1985) who used special methods appropriate 
to sharp-crested waves. Williams (1985) tabulates the orbital times ;TL for particles 
at the free surface and elsewhere in the fluid, from which we may calculate 

(11.1) 
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FIGURE 5 .  The vertical displacement y of a fixed particle at the surface of a limiting wave, for which 
d = '2.0, shown as a function of the orbital time t , .  Circular plots denote original values from 
Williams (1985). Crosses are obtained by rotation through 180" about the mid-point. 

and hence U l c ,  by (3.9). The results are plotted in figures 2 and 4. It will be seen that 
U / c  decreases monotonically with R. (Williams's calculations were a t  selected values 
of d = ln( l /R) , )  As R-t  1, that is in very shallow water, it may be shown that 
U / c  --f 0 linearly with R, that is like (1 - R). 

As c2 -+ 1 in figure 2 we note a sharp increase in U / C  and a vertical tangent 
corresponding to the behaviour of U in near-limiting waves (see Longuet-Higgins 
1 9 8 6 ~ ) .  

There are no tabulated values of the skewness AL3. However, from the known value 
of U / c ,  and by extracting from Williams (1985) the values of c2, g, V and the 'total 
head' i& = h-TE (where h is the mean depth, also tabulated) we can calculate 
first 

then B and C from (9.1), then 
A =--la - x - d  (11.2) 2 0 -  

K = -$(c2+iig+ao) (11.3) 

from (4.8) and 
J = 6 V + 2 a , K + 3 K 2  (11.4) 

from (6.18). We then have all the quantities necessary to find K~ and K~ from (9.3) and 
(9.4), and hence finally AI,3. 

The results are shown in figures 3 and 4, second curve (the scale is on the right). 
It appears that for very steep waves (e2 near to 1) A,, has a sharp downturn. This 
corresponds to the sharp upturn in U in figure 2, which dominates over the 
oscillatory behaviour in some of the other integral quantities. 

In the neighbourhood ofd  = 2.0 (R = 0.135) A,, becomes negative. In other words, 
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as the depth diminishes from infinity, the Lagrangian skewness, which in deep water 
is already small, diminishes still further before increasing indefinitely as the depth 
tends to zero (R-t  1). The most symmetric orbits, in the Lagrangian sense, occur not 
in deep water but in water of intermediate depth. 

To verify this result we have plotted in figure 5 the vertical displacement y (of 
surface particles) against the orbital time t when d = 2.0, as given by Williams (1985, 
pp. 474-477). Circular plots are the original values. The crosses represent the same 
curve rotated through 180" about the mid-point between crest and trough. The two 
sets of points lie practically on the same curve, showing that the curve is highly 
symmetric. 

Seeing that the flow itself, a steep irrotational wave, is highly nonlinear, this is 
a curious and unexpected result. The calculated value of A,, when d = 2.0 is 0.0060 
(see figure 4). A 6-point interpolation indicates that AL3 vanishes when d = 1.93 
(R = 0.145). 

Furthermore, figure 3 suggests that for every value of R less than about 0.1 there 
exists a small range of very steep waves for which the skewness A,, is negative or 
zero. 

12. Discussion 
As in deep water, the expressions for the Lagrangian moments and cumulants of 

the surface elevation 7 are closely related to the mass-transport velocity U ,  and the 
expressions for K~~ and K ~ ,  in terms of the integral quantities T ,  V ,  c2 and U / c  are 
formally very similar to those in deep water. The calculations of the Stokes 
coefficients an is also a simple generalization of the corresponding deep-water case. 
The main difference in finite depth is the role played by the quantity G, the mean- 
square particle velocity a t  the bottom. 

In this paper we have given the analysis appropriate to steady waves of uniform 
height 2a. In  that case it is known that the wave profile is symmetric so that the 
coefficients an can all be taken as real quantities. The existence of some asymmetric 
solutions in very nonlinear waves has recently been demonstrated, a t  least for deep 
water (Zufiria 1987 b) and probably also in finite depth (Zufiria 1987 a) .  The analysis 
given in the present paper can easily be generalized to asymmetric motions, by the 
method used in $8 of Longuet-Higgins (1985). I n  this way the map of bifurcations of 
Stokes waves in water of finite depth may be accurately determined. 
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